metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: C42⋊9F5, (C4×C20)⋊6C4, C5⋊(C42⋊8C4), (C4×D5).81D4, C4.11(C4⋊F5), C20.18(C4⋊C4), D10.9(C2×Q8), (C4×D5).23Q8, (C4×Dic5)⋊21C4, D10.26(C2×D4), (D5×C42).22C2, D10.23(C4○D4), Dic5.27(C4⋊C4), D5.1(C4.4D4), D10.3Q8.4C2, D5.1(C42.C2), C10.7(C42⋊C2), (C22×F5).2C22, C22.67(C22×F5), (C22×D5).266C23, C2.10(D10.C23), C2.9(C2×C4⋊F5), C10.6(C2×C4⋊C4), (C2×C4⋊F5).10C2, (C2×C4).101(C2×F5), (C2×C20).125(C2×C4), (C2×C4×D5).361C22, (C2×C10).27(C22×C4), (C2×Dic5).175(C2×C4), SmallGroup(320,1027)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C42⋊9F5
G = < a,b,c,d | a4=b4=c5=d4=1, ab=ba, ac=ca, dad-1=ab2, bc=cb, dbd-1=a2b, dcd-1=c3 >
Subgroups: 618 in 154 conjugacy classes, 60 normal (18 characteristic)
C1, C2, C2, C2, C4, C4, C22, C22, C5, C2×C4, C2×C4, C2×C4, C23, D5, C10, C10, C42, C42, C4⋊C4, C22×C4, Dic5, Dic5, C20, C20, F5, D10, D10, C2×C10, C2.C42, C2×C42, C2×C4⋊C4, C4×D5, C4×D5, C2×Dic5, C2×Dic5, C2×C20, C2×C20, C2×F5, C22×D5, C42⋊8C4, C4×Dic5, C4×Dic5, C4×C20, C4⋊F5, C2×C4×D5, C2×C4×D5, C22×F5, D10.3Q8, D5×C42, C2×C4⋊F5, C42⋊9F5
Quotients: C1, C2, C4, C22, C2×C4, D4, Q8, C23, C4⋊C4, C22×C4, C2×D4, C2×Q8, C4○D4, F5, C2×C4⋊C4, C42⋊C2, C4.4D4, C42.C2, C2×F5, C42⋊8C4, C4⋊F5, C22×F5, C2×C4⋊F5, D10.C23, C42⋊9F5
(1 51 11 41)(2 52 12 42)(3 53 13 43)(4 54 14 44)(5 55 15 45)(6 56 16 46)(7 57 17 47)(8 58 18 48)(9 59 19 49)(10 60 20 50)(21 71 31 61)(22 72 32 62)(23 73 33 63)(24 74 34 64)(25 75 35 65)(26 76 36 66)(27 77 37 67)(28 78 38 68)(29 79 39 69)(30 80 40 70)
(1 26 6 21)(2 27 7 22)(3 28 8 23)(4 29 9 24)(5 30 10 25)(11 36 16 31)(12 37 17 32)(13 38 18 33)(14 39 19 34)(15 40 20 35)(41 66 46 61)(42 67 47 62)(43 68 48 63)(44 69 49 64)(45 70 50 65)(51 76 56 71)(52 77 57 72)(53 78 58 73)(54 79 59 74)(55 80 60 75)
(1 2 3 4 5)(6 7 8 9 10)(11 12 13 14 15)(16 17 18 19 20)(21 22 23 24 25)(26 27 28 29 30)(31 32 33 34 35)(36 37 38 39 40)(41 42 43 44 45)(46 47 48 49 50)(51 52 53 54 55)(56 57 58 59 60)(61 62 63 64 65)(66 67 68 69 70)(71 72 73 74 75)(76 77 78 79 80)
(1 41 16 56)(2 43 20 59)(3 45 19 57)(4 42 18 60)(5 44 17 58)(6 46 11 51)(7 48 15 54)(8 50 14 52)(9 47 13 55)(10 49 12 53)(21 71 36 66)(22 73 40 69)(23 75 39 67)(24 72 38 70)(25 74 37 68)(26 76 31 61)(27 78 35 64)(28 80 34 62)(29 77 33 65)(30 79 32 63)
G:=sub<Sym(80)| (1,51,11,41)(2,52,12,42)(3,53,13,43)(4,54,14,44)(5,55,15,45)(6,56,16,46)(7,57,17,47)(8,58,18,48)(9,59,19,49)(10,60,20,50)(21,71,31,61)(22,72,32,62)(23,73,33,63)(24,74,34,64)(25,75,35,65)(26,76,36,66)(27,77,37,67)(28,78,38,68)(29,79,39,69)(30,80,40,70), (1,26,6,21)(2,27,7,22)(3,28,8,23)(4,29,9,24)(5,30,10,25)(11,36,16,31)(12,37,17,32)(13,38,18,33)(14,39,19,34)(15,40,20,35)(41,66,46,61)(42,67,47,62)(43,68,48,63)(44,69,49,64)(45,70,50,65)(51,76,56,71)(52,77,57,72)(53,78,58,73)(54,79,59,74)(55,80,60,75), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40)(41,42,43,44,45)(46,47,48,49,50)(51,52,53,54,55)(56,57,58,59,60)(61,62,63,64,65)(66,67,68,69,70)(71,72,73,74,75)(76,77,78,79,80), (1,41,16,56)(2,43,20,59)(3,45,19,57)(4,42,18,60)(5,44,17,58)(6,46,11,51)(7,48,15,54)(8,50,14,52)(9,47,13,55)(10,49,12,53)(21,71,36,66)(22,73,40,69)(23,75,39,67)(24,72,38,70)(25,74,37,68)(26,76,31,61)(27,78,35,64)(28,80,34,62)(29,77,33,65)(30,79,32,63)>;
G:=Group( (1,51,11,41)(2,52,12,42)(3,53,13,43)(4,54,14,44)(5,55,15,45)(6,56,16,46)(7,57,17,47)(8,58,18,48)(9,59,19,49)(10,60,20,50)(21,71,31,61)(22,72,32,62)(23,73,33,63)(24,74,34,64)(25,75,35,65)(26,76,36,66)(27,77,37,67)(28,78,38,68)(29,79,39,69)(30,80,40,70), (1,26,6,21)(2,27,7,22)(3,28,8,23)(4,29,9,24)(5,30,10,25)(11,36,16,31)(12,37,17,32)(13,38,18,33)(14,39,19,34)(15,40,20,35)(41,66,46,61)(42,67,47,62)(43,68,48,63)(44,69,49,64)(45,70,50,65)(51,76,56,71)(52,77,57,72)(53,78,58,73)(54,79,59,74)(55,80,60,75), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40)(41,42,43,44,45)(46,47,48,49,50)(51,52,53,54,55)(56,57,58,59,60)(61,62,63,64,65)(66,67,68,69,70)(71,72,73,74,75)(76,77,78,79,80), (1,41,16,56)(2,43,20,59)(3,45,19,57)(4,42,18,60)(5,44,17,58)(6,46,11,51)(7,48,15,54)(8,50,14,52)(9,47,13,55)(10,49,12,53)(21,71,36,66)(22,73,40,69)(23,75,39,67)(24,72,38,70)(25,74,37,68)(26,76,31,61)(27,78,35,64)(28,80,34,62)(29,77,33,65)(30,79,32,63) );
G=PermutationGroup([[(1,51,11,41),(2,52,12,42),(3,53,13,43),(4,54,14,44),(5,55,15,45),(6,56,16,46),(7,57,17,47),(8,58,18,48),(9,59,19,49),(10,60,20,50),(21,71,31,61),(22,72,32,62),(23,73,33,63),(24,74,34,64),(25,75,35,65),(26,76,36,66),(27,77,37,67),(28,78,38,68),(29,79,39,69),(30,80,40,70)], [(1,26,6,21),(2,27,7,22),(3,28,8,23),(4,29,9,24),(5,30,10,25),(11,36,16,31),(12,37,17,32),(13,38,18,33),(14,39,19,34),(15,40,20,35),(41,66,46,61),(42,67,47,62),(43,68,48,63),(44,69,49,64),(45,70,50,65),(51,76,56,71),(52,77,57,72),(53,78,58,73),(54,79,59,74),(55,80,60,75)], [(1,2,3,4,5),(6,7,8,9,10),(11,12,13,14,15),(16,17,18,19,20),(21,22,23,24,25),(26,27,28,29,30),(31,32,33,34,35),(36,37,38,39,40),(41,42,43,44,45),(46,47,48,49,50),(51,52,53,54,55),(56,57,58,59,60),(61,62,63,64,65),(66,67,68,69,70),(71,72,73,74,75),(76,77,78,79,80)], [(1,41,16,56),(2,43,20,59),(3,45,19,57),(4,42,18,60),(5,44,17,58),(6,46,11,51),(7,48,15,54),(8,50,14,52),(9,47,13,55),(10,49,12,53),(21,71,36,66),(22,73,40,69),(23,75,39,67),(24,72,38,70),(25,74,37,68),(26,76,31,61),(27,78,35,64),(28,80,34,62),(29,77,33,65),(30,79,32,63)]])
44 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 4A | ··· | 4F | 4G | ··· | 4L | 4M | ··· | 4T | 5 | 10A | 10B | 10C | 20A | ··· | 20L |
order | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | ··· | 4 | 4 | ··· | 4 | 4 | ··· | 4 | 5 | 10 | 10 | 10 | 20 | ··· | 20 |
size | 1 | 1 | 1 | 1 | 5 | 5 | 5 | 5 | 2 | ··· | 2 | 10 | ··· | 10 | 20 | ··· | 20 | 4 | 4 | 4 | 4 | 4 | ··· | 4 |
44 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 4 | 4 | 4 | 4 |
type | + | + | + | + | + | - | + | + | |||||
image | C1 | C2 | C2 | C2 | C4 | C4 | D4 | Q8 | C4○D4 | F5 | C2×F5 | C4⋊F5 | D10.C23 |
kernel | C42⋊9F5 | D10.3Q8 | D5×C42 | C2×C4⋊F5 | C4×Dic5 | C4×C20 | C4×D5 | C4×D5 | D10 | C42 | C2×C4 | C4 | C2 |
# reps | 1 | 4 | 1 | 2 | 6 | 2 | 2 | 2 | 8 | 1 | 3 | 4 | 8 |
Matrix representation of C42⋊9F5 ►in GL6(𝔽41)
11 | 2 | 0 | 0 | 0 | 0 |
21 | 30 | 0 | 0 | 0 | 0 |
0 | 0 | 9 | 0 | 0 | 0 |
0 | 0 | 0 | 9 | 0 | 0 |
0 | 0 | 0 | 0 | 9 | 0 |
0 | 0 | 0 | 0 | 0 | 9 |
11 | 2 | 0 | 0 | 0 | 0 |
21 | 30 | 0 | 0 | 0 | 0 |
0 | 0 | 22 | 38 | 0 | 3 |
0 | 0 | 0 | 19 | 38 | 3 |
0 | 0 | 3 | 38 | 19 | 0 |
0 | 0 | 3 | 0 | 38 | 22 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 40 |
0 | 0 | 1 | 0 | 0 | 40 |
0 | 0 | 0 | 1 | 0 | 40 |
0 | 0 | 0 | 0 | 1 | 40 |
17 | 18 | 0 | 0 | 0 | 0 |
34 | 24 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 32 | 0 |
0 | 0 | 32 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 32 |
0 | 0 | 0 | 32 | 0 | 0 |
G:=sub<GL(6,GF(41))| [11,21,0,0,0,0,2,30,0,0,0,0,0,0,9,0,0,0,0,0,0,9,0,0,0,0,0,0,9,0,0,0,0,0,0,9],[11,21,0,0,0,0,2,30,0,0,0,0,0,0,22,0,3,3,0,0,38,19,38,0,0,0,0,38,19,38,0,0,3,3,0,22],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,40,40,40,40],[17,34,0,0,0,0,18,24,0,0,0,0,0,0,0,32,0,0,0,0,0,0,0,32,0,0,32,0,0,0,0,0,0,0,32,0] >;
C42⋊9F5 in GAP, Magma, Sage, TeX
C_4^2\rtimes_9F_5
% in TeX
G:=Group("C4^2:9F5");
// GroupNames label
G:=SmallGroup(320,1027);
// by ID
G=gap.SmallGroup(320,1027);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,56,477,120,422,184,6278,1595]);
// Polycyclic
G:=Group<a,b,c,d|a^4=b^4=c^5=d^4=1,a*b=b*a,a*c=c*a,d*a*d^-1=a*b^2,b*c=c*b,d*b*d^-1=a^2*b,d*c*d^-1=c^3>;
// generators/relations